Transcription factor cCP2 controls gene expression in chicken embryonic stem cells.

نویسندگان

  • Hervé Acloque
  • Anne Mey
  • Anne Marie Birot
  • Henri Gruffat
  • Bertrand Pain
  • Jacques Samarut
چکیده

cENS-1/cERNI genes have been shown to be expressed very early during chicken embryonic development and as well as in pluripotent chicken embryonic stem (CES) cells. We have previously identified a promoter region, which is specifically active in CES cells compared to differentiated cells. In order to understand the molecular mechanisms which regulate the cENS-1/cERNI promoter, we analyzed the cis-acting elements of this promoter in CES and differentiated cells. We identified a short sequence, named the B region, 5'-CAAG TCCAGG CAAG-3', that exhibits a strong enhancer activity in CES and differentiated cells. Mutation of the B region in the whole cENS-1 promoter strongly decreases the promoter activity in CES cells, suggesting that this region is essential for activating the promoter. The B region is similar to the previously described response element for the transcription factor CP2 and we show by supershift experiments that a protein complex containing CP2 is bound to this B response element. All these results identify a nuclear factor belonging to the CP2 transcription factor family that is crucial for the activation of the cENS-1/cERNI promoter. The pattern of expression of cCP2 in early chicken embryo before gastrulation is very similar to that of cENS-1/cERNI which strongly suggests that cCP2 also plays an essential role in gene expression early in embryonic development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expressional Analysis of Stem Cell Marker SALL4 in Mesencephalon during Chicken Embryogenesis

Background SALL gene family represent a group of evolutionary conserved zinc finger transcription factors which are involved in normal development. It includes four members (SALL1 to SALL4). SALL4 has significant roles in the maintenance of pluripotency and self-renewal, efficient proliferation /stabilization and cell fate decision of embryonic stem cells (ESCs). Our aim in this study was to a...

متن کامل

Expression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells

Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...

متن کامل

I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction

Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...

متن کامل

Establishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article

Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 7  شماره 

صفحات  -

تاریخ انتشار 2004